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CLARREO	
  RS	
  CDS	
  –	
  Overview	
  
Climate-level radiometric accuracy is 

achievable in laboratory setting 
 n  NIST approaches have been transferred to other 

laboratories 
n  Dominant uncertainty in going to orbit is stray light 

characterization uncertainty 
l  Laser-based sources and detector-based 

standards are key to understanding stray light 
l  High-fidelity sensor models will allow transfer of 

laboratory characterization to orbit 
n  Must demonstrate: 

l  We understand attenuator behavior on orbit 
l  Radiometric uncertainties allow data aggregation 
l  Polarization assessment can be done as required 
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CLARREO	
  RS	
  path	
  forward	
  
Key to CLARREO error budget is 

documentation and demonstration 

n  Documentation is understood as a high priority 
l  A recent NIST informal review was a first step 
l  Goal is to prioritize efforts to accelerate ability to 

publish 
n  Do not envision any technological issues with 

achieving a 1% reflectance uncertainty 
l  Validating 1% is non-trivial 
l  Demonstrating achievability on orbit is difficult 
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RS	
  Instrument	
   Benchmark reflectance from ratio 
of earth view to measurements of 
irradiance while viewing the sun 
 

Offner system covering 320 to 
2300 nm with 500-m GIFOV and 
100-km swath width 

Reflectance 
traceable to SI 
standards at an 
absolute 
uncertainty <0.3% 

Lunar data provide 
calibration verification 

Inetrcalibration plays a key role in 
developing climate record 
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Calibra?on	
  approach	
  

Ensure prelaunch calibration 
simulates on-orbit sources 

Transfer to orbit through 
accurate prediction of 
sensor behavior while 
viewing known sources 

Characterize sensor to SI-traceable, 
absolute radiometric quantities during 
prelaunch calibration 

Component and system level data 
used to develop hi fidelity sensor 
model 
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LASP’s	
  IIP	
  HySICS	
  
Implements solar cross-

calibration approaches to 
provide on-orbit 

radiometric accuracy and 
stability tracking  

n  HyperSpectral Imager for Climate Science the follow-
on to a breadboard instrument (G. Kopp is PI) 

n  Flight test a CLARREO-like hyperspectral imager 
l  <0.2% (k=1) radiometric uncertainty 
l  <0.13% (k=1) instrumental polarization sensitivity 

n  Perform two high-altitude balloon flights to 
demonstrate solar cross-calibration approach and to 
acquire sample Earth and lunar radiances 
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HySICS	
  provides	
  CLARREO-­‐like	
  opportuni?es	
  
Initial flight in September 2013 

n  Demonstrate feasibility of acquiring CLARREO 
reflected solar data with single spectrometer 

n  Smaller, lower mass instrument 
n  Solar cross-calibrations under realistic conditions 
n  Builds on and improves needed ground test 

equipment 
n  Environmental testing after initial instrument 

calibration 
l  Vibration tests 
l  TVAC testing 
l  Post I&T calibration to confirm instrument 

performance 
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Solar	
  cross-­‐calibra?on	
  
Showing retrieval of 

reflectance is key 
element of HySICS 

n  Non-trivial 
measurement 
because 
l  Large difference 

between solar and 
terrestrial signals 

l  Size of source 
difference as well 

n  Breadboard 
demonstrated 
feasibility 
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HySICS	
  Laboratory	
  improvements	
  
Need to demonstrate that 

research-level efforts at 
metrology labs can be 

transferred to other 
facilities 

n  LASP and GSFC both have NIST-supplied traveling SIRCUS 
and trap detector monitors calibrated by NIST over seven 
orders of magnitude 

n  LASP has a cryogenic, electric substitution radiometer 
n  Uniform, stable white light sources for broadband 

calibrations 
n  LASP also has demonstrated a solar disk simulator High 

power laser adjusts intensity over >5 orders of magnitude 
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Calibra?on	
  Demonstra?on	
  System	
  (CDS)	
  
Reducing risk of achieving on-orbit SI-

traceability achieved through CDS 
n  Reflected solar version is SOLARIS (SOlar, 

Lunar for Absolute Reflectance Imaging 
Spectroradiometer) 

n  Transfer-to-orbit error budget showing SI-
traceability 

n  Technology demonstration for optics, 
depolarizers, & prelaunch calibration 
methods 

n  Field collections to evaluate reflectance 
retrieval, lunar views, and cross-
comparisons with other systems 
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CDS	
  test	
  plan	
  overview	
  
Test plan follows typical 

laboratory-based 
preflight calibrations 

n  Emphasis is on radiometric 
and spectral 

n  Understanding sensor stray 
light and optical models is 
crucial 

n  Field collections used to 
understand the on-orbit 
calibration approaches 



12 

SIRCUS	
  instrumenta?on	
  

n  Key to SIRCUS is use of highly-
accurate monitoring radiometers 

n  4 Silicon trap detectors have 
been calibrated at NIST 

n  5 InGaAs detectors  and 5 sphere 
(Si, IGA, extended IGA detectors) 
underwent stability monitoring 

n  InGaAs detector calibration is 
being arranged 

Transfer	
  radiometers	
  



13 

Source	
  stability	
  and	
  absolute	
  knowledge	
  
Prelaunch, laboratory calibration requires well 

understood source 

n  Monochromatic source is monitored by NIST-
calibrated transfer radiometers 

n  Radiometers provide feedback to source laser to 
stabilize output 

Power stabilizer coupled to output of 
SIRCUS using a feedback signal 
from the integrating sphere 
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Laser	
  source	
  spa?al	
  uniformity	
  
Rely on transfer radiometers 

to map out radiance 
source uniformity 

X and Y translation stages 
with transfer radiometers 
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Flight-­‐like	
  electronics	
  
SOLARIS detector package allows for large 

dynamic range but requires linearization 
 n  Results from field tests showed 

need for improved 
electronics to optimize 
collection times 

n  Flight-like electronics allow for 
better assessment of error 
budget 

n  Funding levels of pre-Phase A 
have led to delays in 
implementing the new 
electronics 

Three SOLARIS electronics systems 
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Electronics	
  delay	
  impact	
  
n  Mitigated electronics delay by 

increasing efforts on other work 
n  Improved blue box 

l  Optics and assembly 
l  Cooled silicon detector 

n  Red box 
l  Assembly completed 
l  MCT detector installed 

n  “Suitcase” SOLARIS 
l  Highly portable version of 

SOLARIS 
l  COTS high resolution detector 

package 
n  G-LiHT airborne system used to 

evaluate SIRCUS methodologies 
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SOLARIS	
  Surrogates	
  -­‐	
  G-­‐LiHT	
  
Goddard’s Lidar, Hyperspectral, and 

Thermal Airborne Imaging System 
n  PI Bruce Cook (GSFC Code 

618) 
n  Vegetation studies 
n  Three instruments 

l  Lidar 
l  Thermal imager 
l  VNIR imaging 

spectrometer 
w  0.4–1.0 µm 
w  1.5-nm sampling 
w  1-m spatial sampling 
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G-­‐LiHT	
  preflight	
  calibra?on	
  

n  Calibrating G-LiHT’s imaging 
spectrometer gives further 
experience with SIRCUS 

n  Allowed development of 
calibration approaches coincident 
with SOLARIS hardware work 

n  Evaluate sensor effects on 
calibration 

n  Transfer of calibration to 
operational conditions 

n  Assess sphere stray light 

Laser-based calibration 
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G-LiHT 

Red Lake Playa, Arizona 
29 March 2013 

Landsat 8 

Landsat 7 

CLARREO/SOLARIS 

Spectralon reference 

http://earthobservatory.nasa.gov/IOTD/view.php?
id=80913 
 

Surface reflectance 
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G-­‐LiHT	
  calibra?on	
  results	
  

n  G-LiHT was calibrated three times 
(1)  Laboratory using SOLARIS approaches 
(2)  Reflectance-based method at McLaws Dry Lake 
(3)  Reflectance-based method at Red Lake 

n  Compare results to those from Red Lake 
n  Comparison is in general +/- 5% 

l  Shows stability of G-LiHT 
l  Shows agreement between laboratory and vicarious 

OLI 4 
OLI 5 
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Landsat	
  8	
  OLI	
  calibra?on	
  results	
  
n  Compare reflectance-based and G-LiHT results to OLI 

measurements 
n  Three sites (Ivanpah Playa, Red Lake, McLaws Dry Lake) 
n  G-LiHT data convolved to the two OLI bands that match 

the T-SIRCUS coverage 
n  Results show agreement to within a few percent 
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Suitcase	
  SOLARIS	
  stayed	
  behind	
  in	
  Arizona	
  

n  Primary measurement is radiance calibration of nadir pixels of Suitcase 
SOLARIS 
l  Spectralon diffuser oriented perpendicular to NIST irradiance standard  
l  Diffuser characterized by NIST in support of Landsat 8 OLI diffuser 

characterization 
l  1.5% Total estimated uncertainty (RSS, k=2) at 650nm dominated by NIST 

source uncertainties and Spectralon panel uncertainties from STARR 
n  Full-field calibration using a transfer radiometer and a large radiance source 

SuitcaseSOLARIS 
at 45° to panel 

ASD fore optic at 
45° to panel 

NIST irradiance standard aligned 
in adjoining room 
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Addi?onal	
  SIRCUS-­‐related	
  projects	
  
GSFC-based IRAD and HyPlant 

imaging spectrometer 

n  HyPlant is airborne system for  
    fluorescence measurements 
n  IRAD is “Evaluation of the performance of an 

imaging spectrometer against Landsat 
requirements” J. McCorkel, J. Masek, P. Dabney 
l  SOLARIS and SIRCUS provide opportunity to 

understand best-case scenario 
l  Evaluate stray light, out-of-band, SNR 

characteristics and corrections 
l  Provides funding to operate SIRCUS and obtain 

an airborne suitable focal plane 
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NIST	
  and	
  CLARREO	
  RS	
  
SOLARIS and other sensors have been used to 
demonstrate key parts of CLARREO calibration 

n  Collaborative efforts with NIST will continue to be 
critical 
l  ‘Operational’ use of SIRCUS 
l  Extension to wavelengths > 1 micrometer 
l  Broadband calibration approaches (HIP) 

n  Laboratory calibration protocols 
n  Error budget demonstration 
n  Reflectance retrieval 

l  Stray light characterization 
l  Instrument model assessment 
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NIST	
  interac?on	
  Nov.	
  2013	
  
n  Presented a tentative 

error budget to NIST 
l  Informational at this 

point 
l  Solicit any suggestions 

on how to move 
forward 

n  Includes NIST-based 
methods  
l  Detector-based 

transfer radiometers 
l  Narrow-band SIRCUS 

approaches 
n  Radiometric calibration 

requirements of RS 
instrument can be met 
with currently-available 
approaches 
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Earth	
  view	
  budget	
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Error	
  budget	
  summary	
  
SOLARIS CDS efforts have made significant progress in 

reducing SI-traceability risk of CLARREO 

n  0.3% absolute uncertainty may not be demonstrated 
during pre-Phase A 
l  Funding level limits fidelity of SOLARIS instrument 

model 
l  Equipment improvements may not be feasible 

n  Demonstrating path to 0.3% is the goal 
l  Peer reviewed 
l  NIST reviewed 

n  GSFC CLARREO laboratory is currently operating at 3% 
uncertainty via field spectrometer transfer 

n  SIRCUS has been implemented for G-LiHT and SOLARIS 
calibration implying better than 3% 
l  Documentation of this effort is still needed 
l  Understanding Landsat-8 results also needed 
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FY14	
  and	
  beyond	
  
Plans for FY 2014 and beyond concentrate on 

taking SOLARIS to below the 1% plateau 

n  Achieving the <1% uncertainty in FY 2014 is at risk 
l  Parallel development efforts are limited by lack 

of personnel 
l  Greater susceptibility to hardware failures 

because of lower procurement funds 
l  Improvements to laboratory calibration facilities 

will be limited or delayed 
n  Develop and test sensor model development 
n  Demonstrate error budget for reflectance retrieval 
n  Produce a peer-reviewed SI-traceability for 

CLARREO-like measurements 


